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ABSTRACT
Measurement studies are essential for research and industry
alike to understand the Web’s inner workings better and
help quantify specific phenomena. Performing such stud-
ies is demanding due to the dynamic nature and size of the
Web. An experiment’s careful design and setup are complex,
and many factors might affect the results. However, while
several works have independently observed differences in
the outcome of an experiment (e.g., the number of observed
trackers) based on the measurement setup, it is unclear what
causes such deviations. This work investigates the reasons
for these differences by visiting 1.7M webpages with five
different measurement setups. Based on this, we build ‘de-
pendency trees’ for each page and cross-compare the nodes
in the trees. The results show that the measured trees differ
considerably, that the cause of differences can be attributed
to specific nodes, and that even identical measurement setups
can produce different results.
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1 INTRODUCTION
Modern websites are intricate and complex software appli-
cations that offer a vast array of features. They often rely
heavily on third-party services for their construction and op-
eration. These services are embedded to dynamically load ad-
ditional content, such as ads or fonts, which may only some-
times be under the control of the site operators [22, 25]. This
dynamic loading process can introduce a non-deterministic
set of objects on a page, potentially affecting commonly stud-
ied phenomena such as Web tracking mechanisms [34] or
HTTP headers [31]. Consequently, the same webpage could
present different objects during Web measurement studies.
Researchers often resort to Web measurements to com-

prehend various phenomena, like Web tracking, security
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mechanisms, or the behavior of social media sites, that af-
fect millions of users [1, 12, 15, 17, 23, 29, 35]. However, the
dynamic nature of the Web poses a significant challenge
to these measurements. Tools such as OpenWPM [19] or
custom-built crawlers are used to scale up these experiments.
Despite this, the effects of different measurement setups
and the root causes of measurement discrepancies still need
to be more adequately understood. Prior research has in-
dicated that even minor changes in a Web measurement
setup can significantly affect the results and conclusions of
a study [2, 11, 14, 24, 31].

While previous studies have mainly explored the effects of
such practices, they have yet to delve into why results differ.
This study bridges that gap by investigating the impact of
various measurement setups, providing a detailed illustration
of differences in datasets resulting from the respective setups.
We examine the similarity of embedded first- and third-party
objects across five measurement profiles. Leveraging these
profiles, we conduct a large-scale Web measurement cover-
ing nearly 25,000 sites and over 350,000 pages, forming the
foundation of our analysis. Afterward, we construct depen-
dency trees for each visited page and cross-compare these
trees, enabling us to identify and quantify differences and
determine to what extent they exist.

This approach aids us in fostering a deeper understanding
of the comparability of privacy studies by cross-comparing
the similarity of different trees horizontally (i.e., nodes at a
specific depth) and vertically (i.e., loading dependencies of
an object). Our experiment contributes to establishing more
robust measurement setups, ensuring reliable results and
reproducibility for future work, and understanding why cur-
rent measurements lack these aspects. Moreover, it provides
insights into the comparability of different works.

In summary, our contributions include:
• Differences in dependency trees.We illustrate that trees
obtained from different profiles present notable differences
in dimensions, node types, and loading dependencies. These
findings suggest that each page visit or measurement intro-
duces a degree of variance, impacting the comparability and
reproducibility of a study.

• Causes of differences.We identify the entity loading a
node and the resource type of the node as primary factors
influencing the differences observed in the trees. Specifically,
we detail that a node’s content type (e.g., iframes or images)
and its loading context (e.g., third-party) are key drivers in
introducing dissimilarities between Web measurements.

• Effects of measurement setups.We examine the differ-
ences caused by minor changes in Web measurement setups.
Our findings reveal that even identical setups operating in
parallel and visiting the same pages can yield significantly

different results. Furthermore, we demonstrate that simple
design choices (e.g., mimicked user interaction) can produce
almost incomparable results.

2 TERMINOLOGY AND BACKGROUND
In the following, we further elaborate on Web measurements
in general (cf. Section 2.1) and discuss prior work on rep-
resenting websites as trees (cf. Section 2.2). For this study,
we use the term site to refer to the registerable part of a
domain—often called the “extended Top Level Domain plus
one” (eTLD+1). The term page refers to a unique URL or the
document (e.g., HTML or JavaScript) located at that URL.

2.1 Web Measurement Experiments
Web measurements are indispensable for understanding the
WWeb, its adherence to legislation, and the functioning of
its vast ecosystems [16, 34, 35]. They illuminate Web content
trends and the extent of vulnerabilities in technologies such
as TLS [4, 28, 30], and infrastructural aspects such as SSL
or HTTP/3 adoption [6, 33]. However, the complexity and
dynamism of theWebmake these measurements challenging.
The dynamic content display mechanisms and variations in
technology stacks complicate Web measurements [11]. Prior
work has shown that slight setup changes can significantly
influence the results, emphasizing the importance of under-
standing how various factors affect the outcomes [14]. The
examples highlight that conducting Web measurements is
complex, and previous studies have already shown that the
outcome of an experiment is affected by several factors (cf.
Section 7). This study aims to fill a research gap by examining
the structure and dependencies of dynamic content.

2.2 Representing Websites as a Tree
With their complexity and dynamic content, websites require
a uniform representation to conduct systematic analysis. One
efficient representation is a tree that models all resources
and their dependencies [22, 32, 34]. We build trees following
previous work to enhance our work’s comparability. The
edges in a tree symbolize HTTP communication, and loaded
content represents a node. Thus, if an element on a page
loads additional content, such as images (i.e., nodes), it will
trigger HTTP requests (i.e., edges). This approach is used in
our work (cf. Section 3.2).

3 METHOD
In this Section, we describe our experimental setup (cf. Sec-
tion 3.1) and our approach to measuring the differences be-
tween webpages (cf. Section 3.2).
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3.1 Measurement Approach
This work investigates the causes of differences in the re-
sults of Web measurement studies when using different se-
tups. We run semi-parallel measurements and define five
profiles whose results we compare. Semi-parallel means that
each profile runs on a separate VM and that the visits are
synchronized on the site level, but differences might occur
on page level. For example, visits to foo.com start on all
VMs simultaneously, but each VM visits all site pages inde-
pendently. We develop our measurement framework along
with recent findings on how to run robust Web measure-
ments [2, 27, 34, 37, 38]. This design choice is intentional to
allow the comparison of our work with previous work, which
currently needs to be improved in our community [14]. Our
setup is based on the openly available framework of Demir
et al. that implements a best-effort approach to conduct par-
allel Web measurements [14]. We describe the framework
used in Appendix C to foster reproducibility.

In general, we use the following non-parametric tests: (1)
the Wilcoxon signed-rank test to assess differences between
two continuous variables, (2) theMann-Whitney U test to de-
termine differences between two independent variables, and
(3) the Kruskal-Wallis test to assess if there are differences
in the central tendency (median) of a continuous dependent
variable across multiple groups. These tests were selected
based on the characteristics inherent in our data. Specifically,
our datasets exhibit non-normal distributions, necessitating
non-parametric methods. Additionally, the independence of
the groups being compared, whether paired or unpaired, fur-
ther guided our choice of these particular tests. The chosen
methods align with our data’s underlying properties and
structure, ensuring robust conclusions. We use a significance
level of 𝛼 = .05 for all tests.

3.1.1 Experimental Design. In the following, we describe the
configuration of the five different browser profiles we use in
our experiment. We resort to these profiles since these types
have been used by previous works [14] to highlight existing
comparability issues in our community. Using methods or
profiles that others have not used before could tamper with
our intention to identify issues with existing approaches. All
of these profiles are based on the Firefox browser, and we
utilize OpenWPM (v0.18.0), a common and popular crawl-
ing framework [19], to capture the traffic we are interested
in. We choose to utilize OpenWPM as it is widely used in
the Web measurement community and, therefore, serves
as a good foundation to conduct our experiments. As the
framework already has a rich feature set, we only made ad-
justments to mimic user interaction, as described later in
this section. The named design choices regarding the mea-
surement framework help increase our work’s comparability
and reproducibility.

We cross-compare these five profiles to understand the dif-
ferences in the analyzed pages. We chose the profiles based
on different configurations commonly used in previous and
related works [14]. The profiles differentiate in the used
version, whether user interaction is mimicked (“user inter-
action”) or not, and if the GUI of the browser is spawned
or the headless mode is used (“GUI”). Two of the profiles
(#2 and #3) use the identical setup to directly compare the
differences between two equal browser instances running
in parallel, visiting the same pages. Table 1 lists the used
profiles. We chose the “user interaction” and “GUI” configu-
rations because, on the one hand, recent results show that
such information is often omitted in setup descriptions [14]
but could, thus, heavily impact comparability. Furthermore,
both options are often omitted to speed up crawls to analyze
more pages in an experiment. On the other hand, mimicked
user interaction significantly impacts the embedded objects
and third-party content (i.e., more content is loaded, for ex-
ample, due to lazy loading). We chose the usage of a GUI as
a parameter since previous works found a varying impact of
this feature [14, 24]. In terms of the used browser version, we
used the most recent stable Firefox version available when
we started the experiment (v95.0; release date 12/2021) and
a version that is roughly one year older (v86.0.1; 02/2021).
This distinction allows us to simulate differences one would
face when comparing current results to ones from previous
studies. Naturally, this approach will not reflect results that
would have been obtained in previous works since websites,
standards, and browser features change over time. Never-
theless, our approach allows us to understand differences
introduced by other browser versions. Furthermore, a ten-
month-old browser should still be supported by most web-
sites. We make our browser profiles and the crawling tech-
nology openly available (cf. Appendix A).
To simulate a genuine user and the interactions of such

a user is nearly impossible. However, such interaction can
severely impact a site’s behavior (e.g., lazy loading of con-
tent). In our profile, without user interaction (#4), we do not
interact with the website, aside from waiting for it to finish
loading or until the timeout of the framework is reached. All
other profiles mimic simple user interaction with the visited
page. Once the browser loads the page, we wait until the page
finished loading (or a timeout is reached) and then simulate
Page Down, Tab, and End keystrokes with short periods of
delay in between. We resort to these keys as they will proba-
bly not load a different page. The timeout and the specific
keystrokes have been used by prior work (e.g., [15]). Such
mimicked user interaction also interferes with bot detection
mechanisms so that such methods do not detect our crawler.
We use the options of OpenWPM to define which user inter-
face is used (options native and headless). To use an older
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Table 1: Overview of the used profiles. Profile #2 and
#3 use the same setup.

# Name Version Interaction GUI Country

1 Old 86.0.1 ✓ ✓ DE
2 Sim1 95.0 ✓ ✓ DE
3 Sim2 95.0 ✓ ✓ DE
4 NoAction 95.0 ✗ ✓ DE
5 Headless 95.0 ✓ ✗ DE

browser version, we adjusted OpenWPM’s configuration to
install the older binary.

3.1.2 Website Dataset. The basis of the set of websites to
analyze is the widely used quasi-standard Tranco list [26].
We used a randomly sampled subset of sites from the list
based on the pages’ rank. We used the top 5k sites from the
list and randomly selected 5k sites from each of the following
buckets: 5,001–10k, 10,001–50k, 50,001–250k, and 250,001–
500k. We used these 25k sites as a starting point to identify
the pages to analyze. We visited the landing page of each
of these sites three days before our experiment to collect
25 subpages (i.e., first-party links on the page) for each of
them to get a broader view of a site’s behavior [3, 14, 34].
We repeated the process recursively if the landing page did
not hold enough links. We list all analyzed pages and sites
in Appendix A.

3.2 Measuring Differences in Websites
A webpage can be modeled along the loading dependencies
of the elements present on it (i.e., as a tree). We generally
build the ‘dependency trees’ for each page to measure web-
site differences based on the observed HTTP traffic (i.e., re-
quests and responses). Each node in a tree represents an
HTML element on a page (e.g., image, JavaScript, or CSS
document), and the edges represent an HTTP request that
leads to the content loading (child node). This approach
is similar to methods used by previous works [22, 25, 34],
which increases the comparability of our work. Naturally,
the URL of the loaded resource is an excellent way to identify
a node. However, we noticed that similar or equal resources
are often loaded via different URLs. One reason is that ses-
sion identifiers or other IDs assigned to a user (e.g., browser
fingerprints) are included in requests as parameters. For
example, the URLs foo.com/scriptA.js?s_id=1234 and
foo.com/scriptA.js?s_id=abcd could load the same or
very similar script. Since we want to compare the trees, us-
ing the URL as an identifier and property to compare would
distort the results because very similar or equal resources
would not be compared. Comparing e.g., MD5 hashes of the
loaded content is also unsuitable since sometimes the loaded
content slightly differs as it includes the identifier. In our

experiment, we still use the URL but adjust each URL to cir-
cumvent the mentioned challenges. To avoid complex (and
maybe error-prone) content comparisons, we drop the val-
ues of query parameters and keep the remaining parts of the
query string (e.g., foo.com?s_id=). Thus, depending on the
browsers’ profiles, different JavaScript libraries (e.g., differ-
ent versions) might be loaded. However, in our analysis, we
treat them as the same node. It is important to note that this
step is performed during the analysis phase and not during
the measurement. In our experiment, we had to apply this
technique to 40% of the observed URLs across all profiles.
We elaborate on the limitations of this approach in Section 6.

To build the trees, we resort to (1) JavaScript call stacks,
(2) HTTP redirects, and (3) (nested) iframe structures, which
are all collected and provided by the measurement tool. Start-
ing with the latter, OpenWPM stores the parent frame that
issued a request, and thus, we can assign each request to a
parent frame and recursively build (sub)branches. We insert
each frame at the corresponding position in a branch and
combine branches if they all share the same parent node.
Regarding JavaScript, we inspect the call stacks, which Open-
WPM stores for each request. In each call stack, we inspect
the latest entry (i.e., the event that issued the request). Thus,
we identify the function and URL responsible for issuing a re-
quest and assign the caller as the parent node. We choose not
to walk over the entire call stack because it does not directly
indicate the dependencies of requests but instead of function
calls. However, the latest entry always includes the URLs
(request) responsible for the call. To find CSS dependencies,
we also analyze the “call stack,” which incorporates the CSS
loading dependencies [8]. Thus, we handle them the same
way as JavaScript dependencies. This artifact results from
the used Firefox and OpenWPM environment. All loaded re-
sources that are not assigned to any branch are attached to
the tree’s root node (i.e., the loaded page itself). Eventually,
each tree consists of all first- and third-party elements of a
page, and each branch represents the dependencies that lead
to embedding any given resource.
IdentifyingTrackingRequests.Our analysis aims to iden-
tify tracking requests as they are often analyzed in previ-
ous works [17, 19, 23, 29, 35]. Thus, analyzing such privacy-
invasive requests allows one to put our results into perspec-
tive with other works. To identify the requests, we profit
from the tracking filter list EasyList [18]). If an observed URL
is on the list, we consider it a tracking request. We provide
the used block list in the supplementary material of this work
(cf. Appendix A) and discuss limitations in Section 6.
Comparing Request Trees. The core of our analysis is the
cross-comparison of different trees generated when visiting
the same page with the defined browser profiles. Our analy-
sis only includes pages we crawled successfully with all five
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profiles. This approach ensures that we have enough data to
compare page visits reasonably. All other pages are dropped
from further analysis. This vetting results in rough dropping
34% of the pages in our experiment. This seemingly high
number of dropped pages was not caused by a single profile
but by combining all profiles. Each profile has a success rate
of at least 89%, comparable to related approaches [10, 14].
Thus, the seemingly high rate of dropped due to varying suc-
cess of the crawlers to visit the pages of interest successfully.
In essence, when comparing the trees, we analyze them

along two different dimensions: (1) cross-comparing the par-
ents of a node (‘vertical tree analysis’) and (2) analysis of sib-
lings (‘horizontal analysis of trees’). Starting with the latter,
to understand the horizontal similarity of a node, we begin by
computing the Jaccard index at a depth of one of each page’s
trees (i.e., the elements directly loaded by the page). Hence,
we cross-compare which elements were loaded by all pages
but exclude—at this stage—all objects subsequently loaded
by such elements. After comparing depth one, we start a
recursive approach for further elements. If we identified re-
occurring objects in multiple trees with at least one child, we
performed a similarity measurement of the children of these
nodes. We repeat this step until we do not find any additional
elements in at least two profiles. We perform a bottom-up ap-
proach to assess the vertical similarity, starting with the last
node in each branch. In this step, we only account for nodes
at least at depth two, excluding nodes included by the visited
page that did not load additional elements. We do so because
the nodes at depth one always have the same parent, namely
the visited page, and analyzing them is not interesting. On
the one hand, we analyze each child’s entire request chain
to understand the deterministic of loading dependencies. To
do so, we compare if two or more branches in the trees of
interest are equal. This comparison allows us to understand
how similar the additionally loaded resources of an embed-
ded object are. On the other hand, we cross-compare the
parent of a node in a branch to understand if the same re-
source always loads specific content. This approach provides
a context-specific perspective on which nodes are loaded and
by whom. Appendix D provides a overview of our approach.

If not stated otherwise, we exclude in our analysis all nodes
at depth one (i.e., the content loaded by the visited page) that
cannot dynamically load additional content (e.g., plain text).
We exclude these elements because they can only result in
a “branch” with only one node and no children. Thus, if we
included them, the reported numbers would not be sound
because they would be biased. These “branches” would bias
the analysis in that they show perfect similarity because
they have no children and cannot load any. Therefore, our
analysis would report that the branches of these elements are
equal, which is true, but would under-report dynamic effects

Table 2: High-level overview of the measured trees.
Tree avg. SD min max

nodes 84 99 1 12k
depth 3.6 2.2 0 30
breadth 44 58 1 12k

Node(s). . .

each present in X profiles (avg) 3.6
present in all profiles 52%
present in one profile 24%

on the Web. Thus, removing them focuses the analysis on
content that introduces dynamics into pages.
Computing Tree Similarities. To compute the similarity,
we resort to the Jaccard index, which is used to gauge the
similarity of sets and is defined as follows: 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | .
By design, the index ranges from 0 to 1, while 1 denotes
that the sets are equals and 0 that they have no element in
common. We chose the Jaccard index because it allows us to
compare and quantify the differences in included elements
(based on their URL) on each page. To compare five sets,
we computed the pairwise similarity between all sets and
used the arithmetic mean value to state the similarity for
a given page. To allow a straightforward interpretation of
the compute scores, we use the following three categories:
high (≥ 0.8), medium (0.3 ≤ sim. < 0.8), and low (< 0.3)
similarity [14]. We choose not to compute similarities of
entire trees (e.g., using theHamming distance [37]) and resort
to computing the similarity as it provides deeper insights
into the changes in the relationships between the nodes. We
analyze branches in multiple trees using set operations and
the Jaccard index.

4 RESULTS
Before detailing the results (Sections 4.1 to 4.4), we summa-
rize the dataset in the following.
Success of Crawling Method. In our measurements, we
successfully crawled 24,857 (99%) sites and identified 387k
distinct pages on these sites. On average, we found 14.6 pages
per site (min: 0; max: 25). Overall, our crawlers made roughly
1.66M page visits; we make the measured (raw) data openly
available (see Appendix A). The sites our crawlers could not
reach are not meant to be visited by a human (e.g., landing
pages of content delivery networks or ad networks). On aver-
age, each profile visited 330k pages (SD: 25,263; max: 374,897;
min: 312,941). Our analysis only considers pages successfully
crawled by all five profiles, which applies to 17,851 (71%) sites,
and 200,798 (55%) of the crawled pages. This step ensures
that we have enough data to compare page visits reasonably.
This reduction of sites and pages cannot be attributed to
a single profile but is attributed to the combination of the
profiles—each profile has a failure rate of <12% (mean: 11%).
General Structure, Size, and Differences of the Trees.
The core of our analysis are the previously described depen-
dency trees (cf. Section 3.2). In our experiment, we cross-
compare five trees for the same page; 1.66M trees in total.
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Figure 1: Distribution of the observed trees’
depth/breadth. We cap the scaling at 2,500 to im-
prove the readability.

Table 2 provides an overview of the measured trees, and
Fig. 1 shows the distribution of the depth and breadth of
the observed trees. The high standard deviations (SD) of the
trees’ characteristics indicate that the structure of the trees
varies. The distribution of the depth and breadth shows that
relatively broad trees are often not very deep, while the wide-
ness of a tree decreases the deeper they get. Nevertheless,
more than half of the trees (56%) have a depth of less than
six and breadth of less than 21. Concerning the general ap-
pearances of nodes in a tree that we observed in each of the
five profiles (see Table 2), we see that each node appears on
average in 3.6 profiles (SD: 1.7; max: 5; min: 1). This finding
shows that deviations in the presence of nodes in the trees
exist and are frequent. More precisely, roughly half of the
nodes appear in all profiles, while a quarter of all nodes are
present in only one profile. The results show that when one
compares two different profiles 48% of the underlying data
varies. On a high level, this indicates the severe impact of the
Web’s dynamic and used crawler on measurement studies
that we aim to understand better in this work.

4.1 Differences in Node Dependencies
The presented figures suggest that snapshots of the same
webpage taken almost simultaneously (in a best-effort at-
tempt) show severe differences when one uses different
browser configurations. In the following, we dive deeper
into the differences we observed to understand the impact
of the Web’s dynamic on a practical level. Fig. 2 shows the
overall similarity of the nodes across all trees. We find that
while roughly 60% of the nodes’ children show high simi-
larity, the remaining share shows a substantial fluctuation
in the observed children. The similarity of the parents of
a given node shows an almost perfect similarity for most
nodes (61%). However, for numerous nodes, the similarity is
low; 20% of the parents have a similarity of .3 or less. This
observation shows us that while many nodes have a simi-
lar set of parents and children, differences in their relations
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Figure 2: Distribution of the similarities of all ob-
served nodes per tree and the similarities of parents.

can impact the measurement results’ comparability. More
precisely, the Web’s dynamic makes it challenging to argue
about loading dependencies (e.g., when analyzing ecosys-
tems or mechanisms like cookie syncing).
Differences in Depth Levels. First, we look at the discrep-
ancies of parties loaded on each depth and cross-compare
the nodes observed on each level individually (see Table 3).
Thus, we compare depth one with depth one, depth two with
depth two, and so on. Hence, we determine similarities be-
tween the nodes’ depths and whether the nodes appear at
different depths in other trees. This analysis allows us to un-
derstand where in a tree differences occur. Overall, we see a
high similarity in the nodes’ depths. The mean Jaccard index
across all depths indicates high similarity, but we see a lower
similarity if we exclude nodes at depth one without any chil-
dren. This difference is expected because several nodes at
depth one reflect the content loaded by the visited page (e.g.,
texts or images), which is alike since we use similar clients
in all profiles (e.g., no differentiation between content for
mobile or desktop clients). Consequently, when we check
the similarity for the nodes that appear in all trees, we see
that they all appear in the same depth. Based on this analy-
sis, we determine that if a node appears in all trees, it will
appear in the same depth and that nodes directly loaded by
the page show high similarity. Note that we are comparing
only the depth of nodes, but not the nodes’ loading chain.
Hence, we might observe the same node at a given depth
loaded by another parent. To dive deeper into the impact on
the similarity of different nodes, we compare the similarity
of depths of first- and third-party nodes. Overall, the Jaccard
index shows a medium similarity for third-party nodes and
a high similarity for first-party nodes (cf. Table 3). On a high
level, these results indicate that third-party nodes do not
occur as stable as first-party nodes do. These figures indicate
that studies focusing on third-party elements (e.g., cookies
or trackers) will find varying results based on the setup. The
reported numbers show differences based on the context but
do not show their implications or the root of them.
Finally, Fig. 3 shows at which depth different types of

nodes occur in the trees. Visual inspection shows that most
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Table 3: Similarity of nodes at different depths.

Test Value
cat. sim. SD max min

across all depths
(all nodes) high .80 .21 1 .09

across all depths
(only nodes with children) med. .74 .21 1 .09

nodes in all trees high .99 .21 1 .09

first party nodes high .88 .19 1 .09

third party nodes med. .76 .21 1 .09
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Figure 3: Volume of different types of nodes in the
trees. Nodes after depth six are combined into one.

nodes occur at depth one (i.e., the elements embedded by the
visited page) and that first-party objects are predominately
embedded at depth one. Furthermore, nodes not used to
track users (first- or third-party) are primarily present in the
trees’ upper levels (≤ 2). In contrast, almost half of the third-
party nodes and tracking requests occur at deeper levels
(> 2). Considering that the tree’s similarity decreases at
deeper levels, these numbers indicate that the comparability
between experiments is not straightforward, especially for
tracking requests and third-party nodes.

In summary, we discovered that even when analyzing
pages almost in parallel using different profiles, the data
observed in each profile differs considerably. We ob-
served different nodes (HTML elements) in the measured
tree representations of the same page. Finally, we showed
that third-party components and nodes used to track
users occur on deeper levels in the tree, which provide
more variance. These findings indicate that a single mea-
surement of a page will only capture a limited snapshot
of the behavior of a page. Web measurement studies must
account for this observation by understanding which el-
ements of a page are dynamically loaded (e.g., due to
properties of the setup) and which are stable.

4.2 Node Relations Across Different Trees
We have shown that differences in the observed trees exist,
which opens the questions how they are introduced.
Cross-comparing Parents in Tree Branches. This part
discusses the similarities of request chains to provide an un-
derstanding of the differences in the loading dependencies
in the trees. We use the term dependency chains (or request
chain) to describe all (grand)parents of each node. More tech-
nically, a request chain reflects the loading dependencies that
initialized the loading of the analyzed node. For this analysis,
we observe only nodes that appear in all trees to understand
how the request chain of a node changes if it appears in
another tree. We see that 75% of the nodes have the same
dependency chains, which means that the same requests in
identical sequences lead to the loading of the resource. In
contrast, 18% of nodes (on average 12% per profile) have a
unique request chain, which means that we observed this
loading sequence in only one profile. If we exclude nodes on
depth one, which have the visited page as a parent, we find
that 57% of the nodes have the same request chains. Thus,
on a high level, the results show that overlaps between the
trees exist but that a considerable part is varying.

The presented results show that loading dependencies are
only sometimes stable. In the following, we shed light on
why andwhere the request chains are changing. Furthermore,
we aim to understand what causes such changes. We first
focus on the nodes with the same dependency chains in all
trees. Note that we exclude all nodes at depth one(42%) since
their dependency chains consist of only one parent, which
means they are naturally identical. We observed a long tail
distribution in the numbers of these nodes per depth. On
depth two, we found 21% of all nodes, on depth three 7%, on
depth four 2%, and on all other depths combined 1%. Thus,
most (94%) of the identical request chains are short (depth
≤ 3). These results propagate to identical chains we observed
in only four or fewer trees. While these chains are short, they
do not occur deterministically in all trees.
As dependency chains tend to be non-deterministic, an-

alyzing which kind of nodes—in terms of resource types—
introduce variations is interesting. In the following, we test
which resource types are always loaded by the same re-
quest chain at a level deeper than one. Table 4a provides an
overview of the most common resource types that are always
loaded by the same dependency chains. In contrast, Table 4b
shows the resource types with the lowest similarity, mean-
ing that varying dependency chains often load them. The
overlap between both tables (e.g., Web sockets are present
in both tables) is related to the fact that similar dependencies
often load these types but that they are loaded in various
contexts (e.g., libraries included by different scripts). On a
high level, it is notable that the same request chain loads the
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Table 4: Effects of resource on loading dependencies.

(a) Same loading chains.

Node type Same chains

main frames 90%
web sockets 88%
XMLHttpRequest 75%
JavaScripts 65%
style sheets 54%

(b) Lowest similarity.

Node type Similarity

CSP reports .10
Image .25
Web socket .27
sytle sheets .31
web beacons .34

vast majority of first-party notes (86%); in contrast, only 56%
of third-party nodes are loaded via not changing dependency
chains. These results replicate to nodes used to track users:
only 28% of the tracking nodes are loaded by the same par-
ents, but 66% of all non-tracking requests are loaded this way.
The provided figures show that pages visited with different
profiles include a considerable number of nodes in different
ways (i.e., different dependency chains). This observation is
particularly relevant for third-party nodes and nodes that
are used to track users. For measurement studies, these find-
ings implicate that high-level results, e.g., the presence of a
specific node, can be compared. However, the reasons why
these results occurred (e.g., why a node is present) can differ.
Hence, studies regarding the ecosystem of a phenomenon
can yield different results based on the setup used.
To better understand the variances in the dependency

chains, we analyze which nodes are always loaded by the
same node in more detail. Here, we limit our analysis to
the nodes that appear at the same depth in all trees and to
nodes that appear at least at depth two. The approach allows
us to understand the dependencies of nodes and their par-
ents. However, this filtering reduces the number of analyzed
nodes to 7.5M (29%). Nodes can be triggered by different or
multiple parents because, for example, different resources
can load a JavaScript library. The results for this reduced
dataset highlight that 61% of the nodes are triggered by the
same parent in all five profiles. Thus, almost two-thirds of
these nodes appear in all trees at the same depth loaded by
the same parents, which means that analyzing them would
provide the same results across all measurement profiles.
Future work could use this finding to develop metrics that
allow one to assess the expected ‘measurement fluctuations’
and indicate an experiment’s accuracy. Furthermore, the re-
sults show that 63% of the parents show high similarity 17%
show medium similarity, and 20% show low similarity. Our
results demonstrate that the parent of a node and, thereby,
the reason the resource is loaded differs in almost 40% of
all cases. Thus, if one analyzes more than the presence of a
resource, the results might differ based on the experimental
setup (e.g., when analyzing ecosystems).
Now, we focus on the nodes with divergent parents to

better understand the differences. More specifically, different

parent nodes in other trees have triggered these requests (i.e.,
the dependency chains differ). The mean similarity of these
nodes’ parents is .33, which means that several resources
(e.g., JavaScript libraries) are loaded by different parents.
First-party nodes show a higher mean similarity in the sense
of their parent (.54) than third-party nodes (.32).
Comparing the Children of a Node. Previously, we ana-
lyzed the parents of a node (vertical bottom-up approach). To
understand how trees grow and which children and grand-
children a node loads, we reverse our analysis to all resources
a node includes (horizontal approach). To do so, we test if
(parent) nodes in the profiles load the same set of children.
The results show that each node has, on average, 0.9 (SD: 6.4;
min: 0; max: 4,613) children. Each visited page (i.e., depth
zero) directly loads 31.7 nodes (SD: 36; min: 0; max: 4,613),
on average. In contrast, most nodes on deeper levels (92%)
only have one or no direct children (i.e., the nodes directly
loaded by the node). The average number of children on
all depths larger than zero ranges between 0.2 and 1. This
distinct drop is expected since many components cannot
dynamically load additional objects. For example, an HTML
image tag cannot load additional content besides the image
itself. This characteristic of the trees indicates that only some
nodes are responsible for a tree’s growth.
If we only look at nodes that have at least one child, we

see a long tail distribution in the number of their children
(depth 1: 3.5, depth 2: 2.7, depth 3: 2.0). Appendix E details the
distribution in the number of children for each node based
on their depth. Nodes on the upper levels of the trees have
few or no children, while nodes deeper in the tree have more
children. This observation seems counterintuitive, but most
nodes cannot dynamically load additional content and, there-
fore, have no children. On deeper levels, the dynamically
included objects load the content they want to insert into the
page (e.g., ads). Since third-party and tracking components
dominate the trees’ lower levels, this finding indicates that
such nodes could load substantially more content than their
first-party counterparts. We dive deeper into differences be-
tween first- and third-party nodes in Section 4.3. However,
outlier nodes with several children exist on all levels, which
are responsible for the trees’ growth. Thus, considerable
parts of a tree are related to only a few nodes, which means
that if they change, the tree itself changes substantially.

Previously, we have shown that loading dependencies (e.g.,
parent nodes) are not stable, but we still need to determine
if a node always loads the same set of children. To answer
this question, we compare the similarity of the children of
nodes by comparing the first-level children of nodes that
appear in all trees (i.e., only directly loaded resources). Over-
all, we observed a medium similarity for a node’s children
(mean: .70; SD: .23; min: .09; max: 1). We find that the node
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Figure 4: The similarity of children and parents. We
combined all nodes occurring at a depth deeper than
four (“4+”) to increase readability.

similarity decreases with its depth if we analyze nodes with
at least one child (at depth one). Overall, we observed a
fluctuating but slightly decreasing trend in the similarities,
starting to increase again in deep branches. This observation
is rooted in the fact that on deeper levels, only a few nodes
exist (𝑛 < 100), which are loaded by a small set of nodes.
Figure 4 shows the decreasing similarity based on the depth,
and Figure 8 in Appendix G provides an overview of the
children and parents’ similarity for different resource types
per depth. One result from this observation is that a phe-
nomenon of interest at deeper levels, it is possible that other
measurements will not find the same. However, if a node is
present at higher levels in a tree, it is also more likely to be
present in other measurements. The Wilcoxon signed-rank
test found statistical significance between the number of
children and their similarity (𝑝-value < 0.001), that is, nodes
that have many children often load different children.
Understanding Implications ofResourceTypes.To gain
a deeper understanding of a node’s type on the dissimi-
larities of a page, we examine the impact of its resource
type on the similarity of its children and parents. Fig. 5a
provides an overview of the distribution of resource types
and the average similarity of parent nodes concerning the
overall similarity of a page; specifically, it shows the share
of content of pages with comparable similarities. One can
see that on webpages with low parent similarity, the node
types image, script, and subframe (e.g., iframes) show the
highest relative share, which indicates that they are mainly
responsible for dissimilarities. In contrast, Figure 5b pro-
vides an overview of children’s similarities. Again, images
show the highest similarity for child nodes, while JavaScript
nodes have the highest share. The Kruskal-Wallis test found
a statistical significance that the resource type of node af-
fects the similarity of children and parents of a node. On a
high level, the results indicate that specific types of nodes
(e.g., images) cause more dissimilarities than others (i.e.,
XMLHttpRequest). However, a deeper analysis of the resource

types shows that subframes have the most significant im-
pact on the similarity of the trees. Pages without any sub-
frame show high average similarity (parent: .86; children:
.90) while pages with subframes show a medium average
similarity (parent: .72; children: .77). These results provide
different challenges since iframes (subframes) are widely
used (e.g.,, to embed ads), and their variance introduction in
the results tampers with a Web measurement experiment’s
comparability, reproducibility, or replicability.

This section shows that the dependencies between the
nodes (i.e., loading dependencies) are not stable across
the measurement profiles. This finding implies that a
single measurement snapshot of a page only holds one of
the many ways a page can embed an object. Furthermore,
we have shown that the node’s resource type influences
the children loaded by a specific node, as certain types
(e.g., JavaScript) tend to load a varying set of children.
Hence, when designing a Web measurement study, it
is essential to understand (a priori) how a page could
include the entities of interest into a page and how the
entity type could affect a study.

4.3 First- and Third-Party Context
We have shown that the loading party affects the similarity
of the children, and the results indicate that third-party re-
sources are less deterministic. This section provides a deeper
understanding of this observation.
Implications on First-party Level.We start by analyzing
the nodes loaded in the first-party context and aim to under-
stand which changes they cause in the trees. Overall, only
32% of nodes are loaded in a first-party context. However,
first-party objects are primarily present at depths one and
two, and (only) in these levels they dominate third-party
nodes (depth 0: 99%; depth 1: 55%). To understand how con-
sistently a first-party node appears on a page, we examine
the frequency of such nodes appearing in other profiles. Our
analysis shows that, on average, the nodes at depth one ap-
pear in 4.5 of 5 profiles. This observation shows that most
pages load a nearly identical set of first-party resources, re-
gardless of the measurement setup. On deeper levels (>1),
we see a similar picture with a minimum of 3.6 of the profiles
containing the same first-party nodes (max: 4.8). Hence, com-
paring resources loaded in the first-party context is robust
for similarly configured crawlers (i.e., same browsers with
similar interaction profiles).
While the presence of first-party nodes is comparable,

assessing if they also load a stable set of children is essential.
If we look at the similarity of first-party nodes’ children, we
find a high similarity for these nodes (mean: .86; SD: .20;
max: 1; min: .09). Thus, we see that, on the one hand, pages
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Figure 5: Distribution of the most common resource types based on the average similarity of all nodes on a page.

load a very similar set of first-party nodes across different
visits and that, on the other hand, these nodes load a similar
set of children. These observations are as expected since
the website providers control these resources and selectively
deliver different content based on, e.g., the used browser.
Thus, measurements focusing on first-party components are
expected to be stable and produce comparable results, even
if the measurement setup changes to some extent. Note that
some changes, in our case, user interaction, can have far-
reaching impacts on the results and, therefore, tamper with
the comparability of the results. These numbers validate
that our framework, measurement approach, and analysis
method are valid since they produce the expected results.
Implications onThird-party Level.While first-party nodes
and their children are quite stable in their embedding, third-
party nodes probably show a different behavior due to their
high dynamism [34]. In the following, we analyze the effects
of third-party nodes in the measure trees. In our measure-
ment, 68% of all nodes are loaded in a third-party context, and
they belong to 21,154 distinct third-party domains. Starting
at depth three, third-party nodes dominate first-party nodes
(on average 95%). Thus, the third-party nodes caused the ver-
tical growth of the observed trees. Similar to the analysis of
first-party nodes, we analyze the appearance of third-party
nodes to understand if they occur in all profiles at similar po-
sitions. More specifically, we test if an observed third-party
node appears in all profiles and how their appearance fre-
quency changes. Third-party nodes appear less stable across
the different profiles than first-party nodes: Our analysis
shows that the third-party nodes at depth one appear on
average in 3.9 profiles. However, at deeper levels (>2) we
observe a sharp decrease (mean: 3.3, SD: 1.6, max: 5, min: 1).
These results show that the immediate inclusion of a third
party (i.e., at depth one) is similar across all profiles, while
the subsequently loaded third parties are less stable.
Finally, we analyze the similarity of third-party nodes’

children. The Jaccard index shows an average medium simi-
larity of .68 (SD: .23; max: 1; min: .09), and across all nodes,
we identify that generally speaking, third-party nodes have
muchmore children (increase of 84%) and triggermoreHTTP
requests (increase of 150%) than first-party nodes. Compared

Table 5: Implications depending on different profiles.

# Name Nodes Third party Tracker Depth Breadth

1 Old 19.62M 13.42M 3.32M 28 11,649
2 Sim1 19.41M 13.24M 3.21M 30 4,562
3 Sim2 19.34M 13.19M 3.20M 29 4,258
4 NoAction 14.53M 9.25M 1.91M 30 4,953
5 Headless 19.39M 13.22M 3.20M 30 4,562

to first-party elements, our results suggest that an exhaus-
tive experimental setup is needed if a study focuses on a
third-party phenomenon. As a result, the reproducibility,
replicability, and even repeatability of studies suffer. This
finding is independent of the depth of the nodes.

This section showed distinct differences between nodes
loaded in the third- and first-party context. The similarity
of nodes in the first-party context is high; however, we
observe lower similarity values for third-party elements
such as trackers or ads. This observation primarily im-
pacts privacy-related studies investigating such content
(cf. Sections 4.4 and 5.3). Therefore, future studies focus-
ing on third-party content should handle such dynamics
to ensure their results’ generalizability, completeness,
and comparability. One way to do so is to perform multi-
ple measurements—using different profiles—of the same
page to capture a complete view of its behavior.

4.4 Assessing Setup Implications
Previously, we have shown that the analyzed sites introduce
notable variance in the performed measurements. While
this is challenging itself, it is essential to understand which
impact the measurement setup has on the outcome of an
experiment. Table 5 provides a high-level overview of the
observed trees for each used measurement profile. In terms
of dimension (e.g., number of nodes or depth), most of the
trees are of similar size, but some characteristics differ (e.g.,
the max. breadth of a tree in profile #4).
Comparing Profiles with the Same Configuration. To
understand the impact of the Web’s dynamic on the compa-
rability of different studies, we compare two profiles that use
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Table 6: Profile differences compared to profile #2
(Sim1).✻: Starting at depth two.✚: For nodeswith at least one child.

Sim2 Old NoAction Headless

First Party nodes’ children
perfect similarity 82% 80% 67% 82%
no similarity 4% 5% 8% 4%

Third Party nodes’ children
perfect similarity 75% 73% 64% 75%
no similarity 13% 15% 22% 13%

First Party nodes’ parent
perfect similarity 94% 93% 92% 94%
no similarity 6% 7% 7% 6%

Third Party nodes’ parent
perfect similarity 65% 63% 64% 65%
no similarity 30% 31% 31% 30%

Dependencies
parent similarity (mean) ✻ .71 .70 .70 .71
child similarity (mean) ✚ .83 .84 .74 .84

the same configuration (#2: Sim1 and #3: Sim2; cf. Table 1).
Overall, the trees of both profiles have similar dimensions
in terms of (1) first-party nodes, (2) third-party nodes, (3)
depth, and (4) breadth of trees. These figures indicate that
both profiles crawled the pages of interest at a similar suc-
cess rate; therefore, comparing them is valid. Concerning
the similarity of the trees, the results show that on the upper
levels (≤5), the trees are highly similar (mean: .92), but that
the similarity decreases on the deeper levels (mean: .75).

Table 6 provides an overview of the observed differences
between all profiles. We compare the results with profile #2
(Sim1) because it serves as a reference to a profile often used
in related works [14]. The results show a distinct difference
in the relative number of perfectly similar nodes (i.e., nodes
that appear in the same depth in both profiles). It is important
to note that even if the numbers across all profiles are similar
(except for profile NoAction), the impact on the results is
different. It is also not the case that the same node across all
measurements shows a perfect similarity (see the previous
sections). The results show that first- and third-party nodes
show notable differences in the set of loaded children (i.e.,
they differ in 18% of the cases) in both profiles.
Browser with an Outdated Version. To assess the compa-
rability of two measurements that analyze the same websites
but with different browser versions, we compare the mea-
surement using an outdated browser (profile Old; #1) with
profile Sim1 (#2). The results are similar to the comparison
to profile Sim2 (cf. Table 6). Thus, using an outdated browser
version has similar effects on the comparability of an experi-
ment than using the same setup. We expected such results
because we visited the same pages, presumably supporting
the outdated version; therefore, the results are similar to the
profile that uses the same configuration.

Mimicking User Interactions. To understand the impact
of simulated user interaction, we compare profile Sim1 (#2)
with the profile that does not mimic user interactions (profile
#4; NoAction). Similar to previous works [14, 34], we find
that simulating user interactions causes much more HTTP
traffic, which leads to larger trees. Comparing the number
of nodes, we see that profile Sim1 has 34% more nodes than
profile NoAction. Furthermore, we find that profile Sim1 has
more third-party nodes (36%) than profile NoAction, and that
each node has less children (15%). The Mann-Whitney U test
found statistical significance of themimicking of user interac-
tions on the nodes’ depth level (𝑝-value < 0.001). Hence, the
profiles with user interaction have more nodes at a deeper
level. Both results show that interactions cause a vertical
growth of the trees, and new nodes load fewer children than
the nodes before mimicking user interaction. More impor-
tantly, our results indicate that mimicking user interaction
changes the result when measuring a page. Compared to
all other profiles, profile NoAction shows the highest vari-
ation (i.e., fewer perfectly similar nodes and more nodes
with no similarity) across metrics except first-party nodes
(cf. Table 6). This observation shows that introducing simple
simulated user interactions can stabilize a measurement.
Using Headless Mode. To understand the impact of utiliz-
ing the headless browsing mode, we compared the profile
that uses this mode (profile #5; Headless) with the profile
Sim1. The results (cf. Table 6) indicate that both profiles in-
troduce a similar variation to the results. Thus, we could not
determine a positive or negative effect of utilizing a crawler
in headless mode. Note that the results of both profiles can-
not be straightforwardly compared as they both introduce
a notable variance into a measurement; however, the mag-
nitude of the variance is similar. This finding aligns with
previous work that found no statistically significant impact
of using the headless mode [14], in contrast to (older) works
that found such impact [1].

The results presented in this section indicate that the out-
come of a measurement can differ significantly depend-
ing on the utilized browser configuration. Even when
using the same configuration and visiting the same page
simultaneously, the nodes and dependencies of the ele-
ments on a page can differ. Thus, it is crucial to be cau-
tious when making conclusions based on a small sample
set since a significant part of the Web is too dynamic.
To overcome this challenge, a measurement should care-
fully select the used configuration(s). Finally, develop-
ing a metric to understand a measurement’s potential
error/variance is vital to gauge the precision of a Web
measurement study.
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5 CASE STUDIES
In the following, we present three case studies to put our re-
sults presented in the previous section in a practical context.

5.1 Unique Nodes
When analyzing novel phenomena or emerging technologies,
Web measurement studies often need to find the ‘needle in
the haystack.’ We analyze unique nodes to understand the
chances of finding ‘the needle.’ We define nodes as unique if
they appear in only one tree. More specifically, we consider a
node unique if and only if it appears in only one tree, ignoring
the depth (i.e., the URL corresponding to this node is only
present once in our dataset). Overall, we see that 6M of the
nodes (24%) are unique. Our observation shows that 37%
of such nodes belong to tracking requests and 90% to third
parties. Thus, using different crawlers might yield varying
results, especially when analyzing new tracking techniques.

On average, unique nodes appear at depth 2.7 (SD: 1.9) and
22 % of these nodes are at depth 1. All of these nodes are ca-
pable of dynamically loading content based on their resource
type: iframes (17%), JavaScript (15%), or XMLHttpRequests
(13%). Regarding the site that delivers the resources, we see
that common ad networks are the top hosters of such content
(e.g., googlesyndication.com (20%)). While these eTLD+1s are
popular, they host advertisements that appeared uniquely
in our experiment. These results are in line with the results
regarding tracking requests. On average, 6 % of all nodes in
a tree are unique. The results show that the relative share of
such nodes increases with the number of total nodes.

5.2 Implications on Cookies
In the following, we analyze the impact of our findings on
the setting of cookies. As per RFC 6265, we uniquely identify
cookies by name, path, and domain [5]. We analyzed cook-
ies as they are widely studied (e.g., [10, 12, 20, 35]). Overall,
we observed 2.2M cookies on the analyzed sites and each
profile set 438k (SD: 39k; min: 370k; max: 459k) cookies, on
average. The profile without mimicked user interaction (#4;
NoAction) has the fewest cookies (370k), while the other
profiles have a similar number of cookies (mean: 455k). Since
we want to understand if different profiles can yield different
results, we test how the appearance and similarity of the
cookies differ when we visit a webpage. We see that only
32% of the cookies appear in all profiles and 42% only in
one profile. To better understand this observation, we cross-
compare the similarity of the observed cookies per webpage.
Themean Jaccard index across all cookies indicates amedium
similarity of .70 (SD: .27; min: .0; max: 1;). When we compare
profiles with interaction with the profile NoAction, we see
less similarity, on average .59 (SD: .44; min: .0; max: 1). The
results show that for 440 (0.2%) distinct cookies, at least one

of the security attributes (e.g., same site, http only, or
secure) has been set differently. Our analysis highlights that
even if the same webpage is analyzed, the observed cookies
provide substantial variance, which means that comparing
measurements is not straightforward. This finding is surpris-
ing because these are hard-coded attributes that one would
not expect to differ.

5.3 Tracking Requests
Finally, we analyze the implications of our results for track-
ing requests, a widespread and often studied phenomenon
on the Web. Overall, we see that 22% of the nodes are used
for tracking purposes, and we observed a mean similarity
of .53 (SD: .27; min: .09; max: 1;) for these nodes. The mean
Jaccard index for the similarity of tracking nodes’ children
across the observed trees is .62 (SD: .21; min: .09; max: 1;), and
for non-tracking nodes .75 (SD: .23; min: .09; max: 1;). It is
worth noting that tracking nodes have fewer children (mean:
1.7) than non-tracking nodes (mean: 3.7). Thus, trackers are
less stable in embedded children than other nodes, making
them more challenging to analyze. Testing the similarity of
parents of tracking nodes shows a lower similarity for the
tracking nodes (.53; SD: .27; min: .09; max: 1;). This finding
indicates that tracking requests are triggered by much more
different requests than non-tracking requests.
We analyzed the distribution of tracking nodes in our

trees, and we see they mostly appear in the upper parts. Of
the observed tracking nodes 9% appear at depth one, 32% at
depth two, 36% at depth three, and the remaining 24% on the
deeper levels. Embedded trackers significantly impact a tree;
slight changes in the upper level can cause different trees, as
they are primarily found in the upper parts and have a lower
similarity. When looking at the parents of the tracking nodes
to understand who is responsible for loading such nodes,
we find that tracking requests are often triggered by other
trackers (65%), which are primarily loaded in a third-party
context (82%). On average, we see that 58% (SD: 43; max: 100;
min: 0) of the tracking requests were triggered by first-party
requests and 42% of the tracking requests were loaded by
third parties. Our analysis of the parent of the tracker shows
that 46% of these nodes are triggered by JavaScript resources,
34% by subframes, and 15% directly by mainframes.

6 LIMITATIONS
Our method has limitations the we discus in the following.
Aside from artificially mimicked user interaction, we do not
interact with the visited pages. Our approach does not ob-
serve content displayed based on user action or content only
loaded in a particular use case (e.g., triggering of a payment
service). Thus, our approach does not observe content only
displayed based on user action , a specific state of the user’s
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browser , or content only loaded in a particular use case.
We must highlight that our crawler does not interact with
consent notices. However, since all measurements are per-
formed from the same location, these effects affect all profiles
similarly, and comparing page visits is still suitable. This cir-
cumstance means that our results can be seen as a lower
bound but also that they are not complete. It must be noted
that implementing a system that automatically generically
interacts with any given page to trigger a different state is out
of the scope of this work. Our approach follows best practices
and uses well-established tools to conduct Web experiments
to reduce the effect of the mentioned limitations.
Furthermore, our method of combining requests from

the same origin, based on their path, can lead to merging
branches that do not originally belong to each other. How-
ever, using all URLs observed in the trees will (unrealistically)
increase the observed differences due to, e.g., session identi-
fiers in the URL. Furthermore, our approach has the limita-
tion that different URLs might look the same after purging
the parameter, even if they load additional content. Accord-
ingly, when we build the trees using these URLs, branches
might be collapsed into one because the identifier (parent
node) might no longer be clear. Overall, our approach will
lead to smaller trees and will more likely underreport the
scale of the problem (lower bound) than overreport it.

Our analysis uses the popular tracking filter list EasyList.
The list is a crowd-sourced attempt to identify Web tracking,
among other things, and might be incomplete or, to some
extent, wrong. However, we assume that such errors only
have a marginal impact on our results. Finally, EasyList is
only one of many blocking lists. Combining multiple lists
could increase the comprehensiveness of detecting trackers,
which we assume would not considerably change our find-
ings and takeaways. Adding blocklists could also result in a
more distorted measurement because lists like EasyPrivacy
do not focus on tracker blocking [13].

7 RELATEDWORK
Recently, several works focused on how to build sound, com-
plete, and robust Web measurement studies. In 2020 Ahmad
et al. observed that using a specific crawling technology sig-
nificantly impacts the outcome of an experiment [2]. Further-
more, Demir et al. analyze the state of the art of how theWeb
security and privacy community performs and documents
their experiments [14]. They show that studies are often
not reproducible or replicable—our work is a step towards
solving this challenge. They provide guidelines that help
design experiments free of such limitations. Jueckstock et al.
show how different measurement tools and network access
methods impact security and privacy measurements [24].
Their experiments show that the investigated parameters

heavily impact, for example, “request/traffic volumes” or
loaded JavaScript libraries. Cassel et al. analyze differences
in observed tracking requests when using mobile or desk-
top browsers [11]. Yang and Yue develop WTPatrol and find
in a comparative measurement study of Web tracking on
23,310 websites with mobile version and desktop version
webpages that mobile Web tracking has unique character-
istics [37]. Vastel et al. find that 291 websites of the Alexa
top 10k block crawlers effectively use fingerprinting [36].
Most recently, Calzavara et al. show that archive-based mea-
surements might pose a reproducible solution to the repro-
ducibility problem, and they develop best practices for future
measurements [9]. Finally, several other works discussed that
small changes in a measurement setup could significantly
affect the outcome (e.g., visiting subsites) [2, 3, 27, 34, 37, 38].
This work extends the existing body of research by providing
an in-depth analysis of the effects of different measurement
setups to understand their impact on websites’ loading and
content inclusion behavior.

8 CONCLUSION AND TAKEAWAYS
In this work, we performed a large-scale Web measurement
study to understand the effects of different experimental se-
tups commonly used. The results suggest that embedded first-
party components show an almost perfect similarity, while
third-party components and other consecutively loaded ele-
ments show much lower similarity values. Especially when
we look at the loading dependencies, we see a substantial
deviation between the profiles, indicating that the Web’s
dynamic is an important factor one must consider when con-
ducting and comparing Web measurement studies. Further-
more, the results show that differences in the dependencies
exist—even if the same setup is used. From the perspective
of privacy-related Web measurements, the differences in
this context are critical because such studies often analyze
phenomena primarily occurring in a third-party context. In
general, our findings highlight that we, as a community,
must invest more efforts in researching and developing ro-
bust measurement setups to ensure the correctness of our
experiments. Takeaways from our study are that:

(1) future work should investigate how to assess “variances”
in Web experiments, which is standard in other disciplines;
(2) drawing conclusions based on loading dependencies is
error-prone since they are often fluctuating;
(3) an understanding of if the phenomenon of interest is
present in the dynamic (e.g., ads) or static (e.g., HTTP head-
ers) content of a page is vital to plan the experiments; and
(4) our approach confirms that researchers should use dif-
ferent profiles and execute multiple measurements to assess
the potential of ‘randomized’ findings.
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A AVAILABILITY OF DATA & CODE
ARTIFACTS

To foster future research, we release our code, queries for the
entire data processing pipeline and evaluation, and other sup-
plementary information online at: ToDo: https://anonymous.
4open.science/r/2023-openscience-tree-measurement-diff-DB21/.
Furthermore, we provide the raw data collected during our
experiments: https://doi.org/10.35097/1719/.

B ETHICS
Our study does not include or directly affect any human sub-
jects. However, our large-scale measurement has ethical im-
plications that must be discussed. Our experiment artificially
generates website traffic that would not emerge without our
experiment. This traffic will use resources (e.g., energy or
bandwidth) that would otherwise be unused and could result
in additional costs for the service providers. Since our traffic
is distributed over several thousands of sites and the traffic
towards individual sites is limited to loading up to 25 pages,
we argue that the traffic generation is reasonable for our ex-
periment. Another aspect to discuss is that if websites serve
ads to our crawler, this could burn the ad budgets of advertis-
ers. However, due to the finite number of measurement runs,
we argue that these costs are negligible. These discussed
aspects apply to all Web measurement studies, and our used
practices are considered state-of-the-art and are accepted by
our research community [11, 14, 24, 27, 31, 34, 38].

C MEASUREMENT FRAMEWORK
We develop our measurement framework along with recent
findings on how to run robust Web measurements [14, 24].
Our measurement setup is based on the openly available
framework of Demir et al. that implements a best-effort ap-
proach to conduct parallel Web measurements [14]. In a
nutshell, the framework consists of a commander machine
administering the experiments and several clients (i.e., vir-
tual machines) that run a distinct browser profile. The com-
mander orchestrates the entire measurement process by sup-
plying the URLs to visit to all clients at once. To achieve
parallelism, the commander waits until each client visited
all pages before providing a new set of pages. Hence, not all
page visits are parallel, but the site visits are started simul-
taneously. Note that the deviation in the visits in our mea-
surement is acceptable (avg: 46 seconds, SD: 111 seconds).
The large standard deviation is caused by pages that timeout
(e.g., by a slowly loading ad) in one profile but not in another.
While the measured deviation could impact the content of a
webpage (e.g., a blog publishes a post within that time), we
assume that our approach is a suitable compromise between
scalability and parallelism. This design choice reduces the
crawling time as, for example, timeouts might be smoothed.
It is worth noting that each virtual machine must run the
technology used to visit the pages (i.e., the tools to analyze
the page visits). Thus, the framework provides the flexibility
to compare different measurement setups. Out-of-the-box,
the framework consolidates the results from each VM and
stores them in a BigQuery [21] database.
GeneralMeasurement Configuration. To increase the re-
peatability and reproducibility of our result, we elaborate
in the following on the general configuration options we
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used in our experiments. We conducted all measurements
from the same public IP address associated with an German
university network (Westphalian University of Applied Sci-
ences), which might introduce some bias into our results.
Furthermore, each VM runs 15 browser instances in parallel.
We configured a timeout for each page visit of 30 seconds
(similar to previous works [14, 34, 35]). Other works used
a longer timeout (e.g., [20, 24]), but the effects of different
timeouts have yet to be studied in detail and could be ad-
dressed in future work. We resort to a shorter timeout to
allow fair scalability of our experiment, in which we visit
over 1.7M pages. We do not perform any consequent experi-
ments to understand a timely impact on the results because
previous work already highlighted such effects [14], and we
assume this will propagate to our results. Web measurements
can be performed stateless, which means that the state of
the browser is reset after each page visit (e.g., cookies set)
or stateful (the state of the browser is preserved between
page visits). Both options come with different up- and down-
sides. We choose to use a stateless approach, which means
that the order of the site visits does not impact the results.
Furthermore, our study will provide a lower bound of the
problem.

D VISUALIZATION OF OUR
COMPARISON APPROACH

Fig. 6 provides an overview of our comparison approach.
The red boxes illustrate the recursive and the blue boxes
illustrate the vertical approach.

Vertical: (1) across all trees, we compare the entire loading de-
pendencies of the node e (dashed blue squares), which is not
present in tree #3; (2) we cross-compare the direct partners of
each node in a branch (dotted blue squares). Horizontal: we
analyze the nodes on depth one (dashed red square) and re-
cursively the children of nodes that appear in more than one
tree (dotted red squares—the figure shows only one example
to increase readability).

In the example, at depth one (red dashed squares), the
given trees have a Jaccard index of

|{𝑎,𝑏,𝑐}∩{𝑎,𝑐}|
|{𝑎,𝑏,𝑐}∪{𝑎,𝑐}| +

|{𝑎,𝑏,𝑐}∩{𝑎,𝑏,𝑐}|
|{𝑎,𝑏,𝑐}∪{𝑎,𝑏,𝑐}| +

|{𝑎,𝑐}∩{𝑎,𝑏,𝑐}|
|{𝑎,𝑐}∪{𝑎,𝑏,𝑐}|

3
=

2
3 + 1 + 2

3
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= .77

and the Jaccard index for all nodes in all trees
6
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3 = .8, while the is
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3 = .3.

Tree #1 Tree #3
F

a cb

d

e

x y

F

a c

d

e

x y

F

a cb

d y

Tree #2

Figure 6: Depiction of our vertical (blue) and horizon-
tal (red) comparison approach.

E NUMBER OF CHILDREN AT A
SPECIFIC DEPTHS

Figure 7 provides an overview of the distribution in the
number of children for each node based on their depth. A
visual inspection of the plot shows that nodes on deeper
levels in the trees include a higher number of (direct) children.
This observation hints that website providers might not be
aware of the inclusion of theses nodes, an observation that
related work also made [34].
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Figure 7: Number of children each node has at a spe-
cific depth. We capped the number of children at 30
and combined all depth level deeper than 20 into one.

.

F UNDERSTANDING IMPLICATIONS OF
SITE POPULARITY

Previous work has shown that a website’s popularity impacts
different phenomena [7, 34]. In the following, we analyze if
and how the popularity of websites, in terms of their rank
on the Tranco list, affects the changes in a tree. This analysis
aims to understand if popular sites act differently regarding
the complexity and similarity of the observed trees. Table 7
provides an overview of the sizes of the trees in the different
buckets and shows the similarities in the parent and child
nodes across each bucket. Given the plain numbers, the trees
of popular sites have more nodes, but the similarity values
are nearly identical. These figures show that popular sites
produce larger trees, but there is no difference in the resulting
similarities of the trees. However, the Kruskal-Wallis test
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Figure 8: Average similarity of children and parent nodes for different resource types based on their tree depth.

Table 7: Observed size of the trees and similarities of
children and parents across the buckets.

# Bucket mean nodes child sim parent sim

1 1-5k 448 .71 .72
2 5,001–10k 434 .71 .71
3 10,001–50k 427 .71 .72
4 50,001–250k 417 .69 .66
5 250,001–500k 369 .70 .67

found statistical significance between the total number of
nodes and the sites’ rank and between the rank and the
observed children and parent similarities (𝑝-value < 0.001).
Nevertheless, the effect size is marginal (𝜖2 = .002), meaning
there is a statistically significant effect, but it is practically

negligible. Thus, a site’s rank does not impact the similarity
when measuring it multiple times.

G SIMILARITY OF DIFFERENT
RESOURCE TYPES

In Section 4.2, we show that the resource type can signifi-
cantly affect the similarity of the observed trees. Figure 8
provides an overview of the average similarity of children
and parent nodes of all resource types based on their depth
in the trees. One can observe how the similarity of nodes’
children and parents differs based on the content type and
the depth. Overall, we record that the similarity for specific
content types stays stable (e.g., Web socket); simultaneously,
the similarity for some content types (e.g., script) changes
drastically based on the observed depth.
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